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Ab_act

A method of dynamic substructuring is presented which utilizes a set of static Ritz vectors as a replacement

for normal eigenvectors in component mode synthesis. This set of Ritz vectors is generated in a recurrence

relationship, which has the form of a block-Krylov subspace. The initial seed to the recurrence algorithm is

based on the boundary flexibility vectors of the component. This algorithm is not load-dependent, is

applicable to both fLxed and free-interface boundary components, and results in a general component model

appropriate for any type of dynamic analysis. This methodology has been implemented in the

MSC/NASTRAN normal modes solution sequence using DMAP. The accuracy is found to be comparable to

that of component synthesis based upon normal modes. The block-Krylov recurrence algorithm is a series of
static solutions and so requires significantly less computation than solving the normal eigenspace problem.
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Introduction

Component mode synthesis is a methodology for analyzing large structures by separating them into smaller

components, which can then be recombined to analyze the entire system. This methodology has become well
established and widely used in structural dynamic analysis. The advantages of component mode synthesis

include, the lower computation costs associated with the smaller components which are analyzed, and the

flexibility of data management gained by working with the discrete components.

The typical component mode synthesis algorithm is briefly described [1]. A large structure is broken into

components, with each component having a set of boundary, or interface, points. At these interface points,

f'Lxed or free boundary conditions are assumed, and a corresponding set of component normal mode shapes,

or eigenvectors, is determined. The eigenvectors are augmented by a set of modes which are associated with

the component's boundary flexibility. Depending on whether a fixed or free interface is selected, these modes

are the constraint modes or the attachment modes, respectively. The combined set of component normal

modes and boundary modes are used to represent the component in subsequent system analysis, by using the

following transformation process. The combined set of modes form a coordinate transformation matrix which

transforms the physical coordinates of the structural model into a combination of medal coordinates and

boundary coordinates. The boundary coordinates are retained in the physical space, so they can be used to

couple the components for subsequent system analysis.

A component's size, although smaller than that of the complete structural model, can still be large enough

to make computation expensive. The rapid reduction in cost per calculation in today's digital computers has

not necessarily led to a reduction in total computation cost. Instead, engineers have exploited the increased

computational resources by creating larger structural and component models. The larger models have allowed

for more structural details to be included, as well as more tel'reed data recovery, but they may be expensive

to formulate and analyze. In order to reduce the computational cost associated with large component models,

it is desirable to develop more efficient methods of formulation. Since the solution of the normal eigensystem

problem requires the largest computational effort in component formulation, it is logical to develop alternate
methods which circumvent the eigensystem solution entirely.

A method, which does circumvent the eigensystem solution, has been defined in literature and is briefly

described [2-4]. The boundary flexibility modes, specifically either the same constraint modes or attachment

modes that were mentioned previously, are multiplied by the component mass matrix to create a force matrix.



Staticanalysisis thenperformed,usingthisforcematrix and the component stiffness matrix, to obtain a

matrix, or block, of vector displacements. A recurrence relationship of matrix multiplications, which have been

shown to be a Krylov sequence [3,5], then def'mes a series of matrices, or blocks, of vector displacements. The
calculated vectors are orthogonalized, using normalized Gram-Schmidt orthogonalization [6]. These vectors,

which can also be thought of as static modes, replace the normal modes in the component formulation

methodology. Because the vectors are calculated in blocks and are based on a Krylov sequence, the subspaee

det'med by these vectors is called a block-Krylov subspace.

The primary contribution described in this paper is the incorporation of the above methodology into

MSC/NASTRAN. Since the block-Krylov vectors replace the normal modes in typical component mode
synthesis, the physical to modal coordinate transformation, the constraint modes, and the attachment modes,

are not changed. Therefore, the component mode synthesis formulation currently available in

MSC/NASTRAN was utilized, except for the substitution of the normal modes by the block-Krylov vectors.
In addition to the contribution described above, the technique of using Gram-Schmidt orthogonalisation

within each vector block was added to the methodology.

Problem Definition and Theory

Overview

Wilson, Yuan, and Dickens [71 originally proposed the use of Ritz vectors, based upon external loading, for

structural dynamic analysis. This formulation reduced an entire structure, not a component. The algorithm

begins with a set of externally applied loads. The displacements from the static solution to the applied loads

become the initial Ritz vector. That vector is then multiplied by the mass matrix to become the next force

vector. This sequence is repeated to form a recurrence relationship. This recurrence relationship is used in the

papers discussed below and throughout this work.

Nour-Omid and Clough [5] investigated Wilson, et al.'s methodology and found that the proposed recurrence

relationship was actually a Krylov sequence. A Krylov subspace of order j is a vector space defined by

[_,A_,A2_,...,AJ-I _] (1)

where _b is a column vector and A is a square matrix. If A is n × n dimensional, and if j = n, the Krylov

vectors span the n-dimensional space [3], and an exact solution can be produced. In structural dynamics, the

Krylov subspace can be defined by the following sequence,

[r,K -I Mr, (K -1 M )2r, ... ,(K -I M )J -I r]
(2)

where K isthe stiffnessmatrix, M isthe mass matrix, and r isa startingvector (orinblock-Krylov,a set of

vectors).This Krylov sequence isidenticalto the Lanczos eigenvalueextractionalgorithm,when appliedwith

complete orthogonalizationwith respectto both the mass and the stiffnessmatrices.

The use ofKrylov vectorswas shown tobe applicableto component mode synthesisby Wilson and Bayo [8].

The Ritzvectorscalculatedwere based,once again,upon an externalload.Only a formulationforcomponents

with fLXedinterfaceboundary conditionswas presented.

Craig and Hale [3],and Abdallah and Hucklebridge [2],demonstrated a methodology applicable to

components with fixedor freeinterfaces,with or without rigidbody modes, and with no appliedloading.

Components having no appliedexternalloadingwere formed using theboundary flexibilitymatrix,multiplied

by the mass matrix, to form a forcematrix. This forcematrix produces a set ofvectors,which are referred

toas a block.As discussedpreviously,the boundary flexibilitymatrix isdefinedas eitherthe constraintmodes



or the attachment modes, depending on whether fixed or free interface conditions axe se]ected.The

methodology contained in thesetwo papers isreviewed in the next threeparts of thissection.Abdallah and

Hucklebridge also quantifiedthe edva3tages, in computational effort,that block-Krylov vectorshave over

normal eigenvectors.

Yiu and Landress [4]alsodeveloped a methodology forforming a component which does not have an external

applied load. However, theirformulation isapplicableto fLxed interfacecomponents only. A criteriafor

concluding the recurrence sequence, based upon the rigid body mass and flexibilityrepresentedby the

calculatedRitz vectors,was proposed.

Fixed Interface Methodology

First,as isstandard in component mode synthesismethods, the finiteelement component mass, m, and

stiffness,k,matrices arepartitionedinto internaland externaldegreesoffreedom, denoted by subscriptsiand

c,respectively.

In--"

The constraintmodes are definedby

which isthe same definitionused in standard component mode synthesis.

For Wilson's method [7], a setofexternallyappliedloads isrequiredtoobtain the initialset ofRitz vectors.

For the boundary flexibilitymethod, thisset ofloads iscreatedby multiplying the constraintmodes by the

mass matrix. (Craig [3]alsoincluded the off-diagonalmass matrix inhisformulation.)Sincethe mass matrix

isused to createthe loads,they can be consideredinertialoads.This set of inertialoads are then used to

generate the initialset,or block,of Ritz vectorsusing the following

q;* = kii -1 (mii¢_ic +mi c) (6)

where the superscript ** indicates that the vectors in the matrix have not been normalized. The Rrst block

of vectors is normalized using the following equation. The subscript r, in the following equation, signifies that

the block is normalized vector by vector, and there axe c vectors within each matrix, or block.

qlr* *

ql, "ffi r = 1,2,...,c (7)

q* T miiqlr* *)



Thesubsequentsetsof block-Krylov vectors are generated using the recurrence relationship [5,7], which was

defined in Eel. (2),

--kii-1 m_ qj-1 (s)

where the superscript * signifies that the vectors have not been orthogonalised or normalized. The additional

sets of vectors are orthogonalized, with respect to the mass matrix, with all previous vectors. The process used

to perform this orthogonalisation is a normalized GrAm-Schmidt procedure.

where

,, , (9)
qj = qj -qlj-1 c

C = qlj_l T mii_l_° (10)

and qlj-1 is the concatenation of the previous sets of block-Krylov vectors,

qlj-I = [ql,q2,"',qj -1] (11)

where all vectors have been normalized as follows.

qjr _

r = 1,2,...,c (12)

qJr ffi Vl(qJr* * T miiqj r+ I)

The complete set of calculated block-Krylov Ritz vectors is included in the transformation matrix as Ql" (The

resulting transformation matrix has the same form as that of _Craig-Bzanpton _ component mode synthesis

[9], with the Krylov vectors replacing the normal modes.)

(is)

The physical mass and stiffness matrices are transformed into the component modal matrices

P _Tm_ (14)

=_Tk_ (15)

The resulting mass submatrices are

where

/_cc = 0ic T (mii_ic + _ic ) +mci_ic +met

(18)

(17)

/_lc = Pcl T = Q1T(mii_ic +mic) (18)



The resulting stiffness submatrices are

_. --In =q_ muq_ (19)

(20)

where

_¢¢ = kci_i¢+ kcc (21)

glc = S:clT = O (22)

The use of constraint modes in the transformation matrix leads to the null off-diagonal partitions of the

component stiffness matrix, just as in the approach based upon normal modes.

Free Interface Methodology for Components with No Rigid Body Modes

When allowing the interface points of a component to be free to deflect while forming the component, a
somewhat different basis for the initial vector of the Krylov algorithm is required. The attachment modes,
rather than the constraint modes are utilized in initial block def'mition. By definition, the attachment modes

are the columns of the flexibility matrix which correspond to the interface degrees of freedom.

g =it-1 (24)

g _-[scc1
Lgi, J

The initial block of vectors in the free interface formulation is defined as

(25)

• • = k-1 (2o)ql m ga

and is normalized as follows.

ql r
ql, = r = 1,2,...,c (27)

_( **T *ql r m ql r *)

Note that the unpartitioned physical mass and stiffness matrices of the component are used in the free

interface formulation. The recurrence algorithm then proceeds in the same manner as in the fixed interface

methodology.



• (2s)
qj = k-I m qi -I

qj,, =qj, _qlj_l c (29)

c = ql_ -1T m qj * (30)

qjr _

qi, = r = 1,2,...,c (31)

(qj,**Tm qj,

Formation of block-Krylov component then follows the normal component mode synthesis techniques which

were presented by MacNeal [10] and Rubin [11]. To combine the _Rubin-M,_cNeal _ method with the presented

method, the normal eigenvectors axe simply replaced with the hlock-KxTlov Ritz vectors, as in the fLxed

interface methodology. The free interface methodology uses residual flexibility terms, which fully define the

stiffness missing from the modal space due to excluded modes Lnd are described below. The flexibility

contained in the calculated Krylov vectors is given by the following equation.

Sk--q] (QTk ql)-1QT (32)

The unrepresented flexibility, or residual flexibility, is def'med as

gd ffig - gk (ss)

The residual flexibility matrix is then partitioned in the same manner as the flexibility matrix was in

Eq. (25), when the attachment modes were created for initial vector calculation. The result is the residual
attachment modes.

I gcca 1
gad ffi

Lg,o J
(s4)

When the residual attachment modes, gad, axe added to the Krylov modes, QI, the complete flexibility of the
component is represented.

The residu_d attachment modes and the Krylov modes axe used to form the component transformation matrix.

This matrix tremsforms the physic_ subspace, u, to the mod_l subspace, p, and is defined by the following

equation.

In order to provide physical interface degrees of freedom, for use in component coupling, Pc in the above

equation is back-transformed to eliminate it from the right-hand side of the equation. This results in the

following transformation matrix,



where

I:]r,c0][:i
[ gic* Qil*

(s6)

gic* = gic agcc a- 1 (37)

Qil* = Qil - gic a gcca -1 Qcl (38)

The transformation ofthe component mass and stiffnessmatricesthen proceeds ina similarmanner asshown

inEqs. (14)to (23),with the followingdifferences.The Qfl*matrix partitionreplacesthe Ql matrix partition.
* . ° .

The gic matrxx partltlonreplacesthe _i¢ matrix partition.Inthe fixed-interfacemethodology, the definition

of the constraintmodes, _ic,leadsto terms in the component stiffnessmatrix which cancelout. In the free-

interfacemethodology, the definitionof the transformationsubmatriceshas changed and so thiscancellation

does not occur.Therefore,Eqs. (21)and (22) axe replaced by the followingequations.

and

_cc = gic* T (kii gi¢* +kic) +kcigic* +kcc

_j¢ _cj T Qu* T ,= ": (_gic +kit)

(s9)

(4o)

Free Interface Methodology for Components with Rigid Body Modes

When a component has rigidbody modes, the associatedstiffnessmatrix is singular.The inverseof the

stiffnessmatrix, the flexibilitymatrix, cannot be directlyobtained,and thereforethe attachment modes

cannot be directlyobtained.To circumvent this problem, Rubin [11]presented the followingmethod for

obtaining the residualelasticattachment modes of a component with rigidbody modes.

First,the stiffnessmatrix isconstrainedfrom rigidbody motion by partitioningout r degrees offreedom,

where r isthe number ofrigidbody modes.

(41)

The remaining partitionisthen inverted.

gww = kww -1 (42)

This flexibilitymatrix isthen expanded back to n (w + r) size.

Iz_ 0,.1gc ffi 0r w 0r r

A square projectionmatrix isdefinedby

(4s)
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A = :[an - m<_r<_r T (44)

where _r is the rigid body modes matrix. The elastic flexibility matrix, ge, with rigid body motion removed,

is shown in reference [11] to be

Se = ATSe A (45)

Now the analysis proceeds in a similar fashion to the previously discussed methodology of the free interface

component with no rigid body motion. The major difference between the two approaches is that the elastic

flexibility matrix is used in place of the general flexibility matrix. The inertia relief attachment modes are

sec,]g&e _

Lgic,

(46)

The initial block of vectors is calculated using the inertia relief attachment modes and the elastic flexibility
matrix.

ql" " ffige m g&. (4_)

The subsequent block-Krylov Ritz vectors are calculated, orthogonalized, and normalized as shown in

Eqs. (28) to (31). The residual elastic flexibility terms are also calculated as shown in the free interface with

no rigid body modes discussion, Eqs. (32) to (34). Creation of the transformation matrix, Eqs. (35) to (40),
is also similar to when no rigid body modes are present. The one exception is that the rigid body modes must

be included in the transformation matrix. Therefore, Eq. (35) is replaced by

Il+ crl[PClpru¢ S¢¢ d Q¢I
= Pl

ui [ gic a Qil _ir

(48)

Formation of the final transformation matrix, and subsequently the component mass and stiffness matrices,

is then performed as described in the previous section.

Discudoa

As previously discussed, most component mode synthesis applications use the normal eigenvalues of the

substructure to form the component. It is accepted that if all the eigenvalues of a system are used to form the

component, an _exact _ finite element solution may be obtained. The same fact holds true for components

based upon block-Krylov subspaces. Mathematically, this is proven in references [3] and [12]. If n orthogonal

block-Krylov Ritz vectors are used to form a component of a n-size system, the same _exact _ solution as from
normal eigenvectors is obtained.

Orthogonali_

Upon completion of the block-Krylov vector calculations and Gram-Schmidt orthogonalizations, all vectors

are re-checked for orthogonality. Orthogonality checking is required because the normalized Gram-Schmidt

9



orthogona]izationalgorithm isnot always successfulat producing independent vectors[6].The Gram-Schmidt

procedure willfailon occasionswhen vectors,although theoreticallyindependent, are dependent within the

numerical constraintsof current digitalcomputers. These vectors cannot then be made orthogonal and

independent,using the normalized Grarn-Schmidt procedure described in the previoussections.

The orthogonalityof the block-Krylov vectorsisre-checkedusing the following

L = QlT mii Ql (49)

Ifallvectorsareorthogonal and normalized with respectto the mass matrix,L willbe a l-sizeidentitymatrix.

The mass matrix used in Eq. (49) isappropriateforfixed interfacemodes. For the freeinterfaceapproach,

the fullphysicalmass matrix isused.

Several solutionsto the numerical dependence problem are being investigated.These potentialsolutions

include selective re-orthogonalization,the modified Gram-Schmidt procedure [6], and Kahan's

orthogonalisationprocedure [13].

During examination of the boundary flexibilitymethod, itwas found that the Ritz vectorswithin the Krylov

blocks were dependent on each other.In fact,itwas determined that there isno theoreticalbasiswhy the

vectorswithin the initialblock should be independent.The boundary flexibilityalgorithm,as presented in

reference[2]and discussedinsectiontwo, m,_kesno orthgonalitycheck ofthe vectorswithinthe Krylov block.

Furthermore, the subsequent Oram-Schmidt procedure isineffectivebecause the blocks are orthogonalized

with respectto a setof vectorsthat are not orthogonal.

The problem ofdependent vectorswithin the block can be eliminated by modifying the boundary flexibility

algorithm.Inorder to make allthe vectorsinthe solutionorthogonal,each Krylov block was partitionedinto

it's individual vectors. The Gram-Schmidt orthonormalizing procedure, shown in Eqs. (9) to (12), was then

applied vector by vector to each Krylov block. The constituent vectors are then reassembled and the analysis

proceeds as before. An alternate solution to the problem of dependent vectors within the blocks, is shown in

In this solution a singular value decomposition is performed on the qj"Tmqj'" subspace. Thereference [12].

resulting similarity transformation orthogonalizes the block.

Modal Selection

A subjectwhich requiresfuture investigationisthe selectionof block-Krylov component modes. The Krylov

vectorsare modes, although they are staticmodes (asare constraintand attachment modes), in contrastto

the normal modes based upon the eigenvalues.The simplestapproach to modal selectionismodal truncation,

based upon the numerical value of thenaturalfrequency.However, modal truncationcannot be used directly

with Krylov modes, because thereaxe no eigenvaluesassociatedwith them. Modal selectiontechniquesmore

sophisticatedthan modal truncationwillalsobe investigated.The algorithm currentlyimplemented has no

modal selectioncapability.The Krylov modes produced are the Zrylov modes used,incomponent formation.

Programming

The previouslydescribed algorithms were implemented in MSC/NASTRAN [14].The use of a standard,

commercially availablecomputer program allowsthe resultsofthiswork to be easilyused by other structural

dynamists. Adding these methodologies to MSC/NASTRAN is allowed through the use of the internal

programming language calledDMAP (DirectMatrix Abstraction Programming). The standard solution

sequencesof MSC/NASTRAN are writtenin DMAP, and the source code of MSC/NASTRAN isavailable

10



at the DMAP level.For example, Eqs. (3) to (5), and Eqs. (16) to (23) are currently contained in the

standard MSC/NASTRAN normal modes solution.Equations (6)to (12)were coded usingDMAP, and were

then incorporatedinto the MSC/NASTRAN solutionsequence.A DMAP listingofthe presentmethodology

iscontained in the Appendix.

Definition

An example case of a cantileveredbeam was derived from a finiteelement model of the Space Station

Freedom photovoltaicarray centralmast. The length ofthe beam was 1179.9 in.The modulus ofelasticity,

E, was 10.1)<106Ib/in.2 and the moment of inertiaof the crosssectionwas 108.9 in.4 Itsweight per unit

length was 0.2296 Ib/in.The cantileveredbeam was modeled with elevennodes and 10 beam finiteelements.

A varietyofboundary conditions,describedin the next section,were imposed upon thisbeam.

Results

A component representationof the I0 element beam was createdusing the boundary flexibilitymethod with

block-Krylov iteration.The fLxedinterfaceapproach, with two Krylov blocksand constraintmodes, was used

toform the component. The interfaceofthe component consistedofone node and 6 degreesoffreedom. The

number of constraintnodes isequal tothe number ofinterfacedegreesoffreedom, and the sizeof the Krylov

block isequal to the number of constraintmodes. Therefore,each Krylov block contained sixvectors.Since

the component was formed with two Krylov blocks,itcontained a totalof 12 generalizedcoordinates.

Plots of the lateralKrylov vectors,which representedthe cantileveredbeam, are shown inFigs. 1 to 4.The

unorthogonalized vectors,as output by Eqs. (6) and (8) are shown in Figs. 1 to 2(a) and Figs.S to 4(a),

respectively.The fL_stnormalized vector,as output by Eq. (7),isgiven in Fig. l(b).(The f'n-stvectordoes

not need to be orthogonalized.)The remaining orthogonalisedand normalized vectors,asoutput by Eq. (12),

are given inFigs.2 to 4(b). The firsttwo unorthogonalizedRitz vectors(plottedinFigs.1 to 2(a)),which

are in the f'u-stKrylov block, appear to be nearly identical.The firstmode issimilarto the classicfirst

bending normal mode shape of a beam and, afterGram-Schmidt orthogonalization,the second vector has

become the classicsecond bending normal mode shape (shown in Figs.1 to 2(b)).

The eigenvaluesofthe reduced Krylov subspace were calculatednext.The firstfivenaturalfrequenciesfrom

thisreduced system are shown inTable 1.For comparison,Table I alsoincludesthe frequenciesofa reduced

system where the component was formed using traditionalnormal modes. This component was alsoformed

with a irLxedinterface,but thirteennormal modes were used fornumerical convenience.The full,or "exact,_'

finiteelement eigenvaluesolutionisalsoshown. In the caseof the Krylov vectors,no modal selectionof any

kind was used. For the case ofthe normal modal component, modal selectionby truncationwas used.The

superioraccuracy ofthe normal modal component, inthe fourthbending mode, does not necessarilyrepresent

a limitationof the block-Krylov method, but insteaddemonstrates the need for a Krylov modal selection

criteria.

In addition to the fixedinterfaceexample, two freeinterfaceexamples were created.Both were was based on

the same 10 element beam describedabove, but with differentboundary conditions.The firstmodel was free-

fLxed,with the component interfacebeing the freeboundary condition,and hence ithad no rigid-bodymodes.

Equations (24) to (40)definethe formulation of thisfreeinterfacecomponent. Table 2 shows the ir_rstfive

system naturalfrequenciesofthismodel compared to the naturalfrequenciesofthe fullfiniteelement model.

The other model consistedofthe 10 element beam with free-freeboundary conditionsand rigidbody modes.

Equations (41) to (48) define the formulation of this component. Table S shows the f'trstfour elastic

frequenciesofthismodel compared tothe frequenciesofthefullfiniteelement model. In the two freeinterface

cases,there is no comparison with the normal component mode synthesis.This isbecause standard free-

interfaceMSC/NASTRAN routinedoes not use the _Rubin-MacNeal" method, and so a directcomparison

was not performed.
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Conclusions

Using boundary flexibility matrices to initialize the block-Krylov recurrence algorithm provides an ei_cient

and simple method for generating static Ritz vectors. Static Ritz vectors so generated accurately represent

the dynamics of a substructure. Because this methodology does not require the solution of the component

eigenvalue problem, the component can be formed with a significant decrease in computational effort.

Although the issues of vector dependency and modal selection require further investigation, the block-Krylov

Component Mode Synthesis method is a promising alternative in dynamic substructuring.
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TABLE 1.--COMPARISON BETWEEN THE C_TiLEVERED BEAM

FREQUENCIES USING FIXED INTERFACE COMPONENT

NORMAL MODES, KRYLOV MODES,

AND FINITE ELEMENTS

System frequencies

full/'mite element

Ist Bend

2nd Bend

3rd Bend

4th Bend

1st Torl

0.5464 Hz

3.415 Hz

9.522 Hs

18.57 Hz

27.58 Hz

From component

normal modes,

0.5464 Hz

3.415 Hz

9.522 I-Is

18.57 Hz

27.58 Hz

0.

0.

0.

0.

0.

From component

Krylov modes,

A%

0.5464 H¢ 0.

3.415 HT. O.

9.610 Hz .924

24.24 Hz 30.5

27.58 Hz 0.

TABLE 2.--COMPARISON BETWEEN THE CANTI-

LEVERED BEAM FREQUENCIES USING FREE

INTERFACE COMPONENT NORMAL

MODES, KRYLOV MODES, AND

FINITE ELEMENTS

System frequencies

full finite element

Ist Bend

2rid Bend

3rd Bend

4th Bend

Ist Ton

0.5464 Hz

3.415 Hz

9.522 Hz

18.57 Hz

27.58 Hz

From component

Krylov modes,

0.5464 Hz 0.

3.415 Hz 0.

9.524 Hs .02

19.23 Hz 3.6

27.58 Hz 0.

TABLE 3.--COMPAR/SON BETWEEN THE FREE-

FREE BEAM FREQUENCIES USING FREE

INTERFACE COMPONENT KRYLOV

MODES, AND FINITE ELEMENTS

System frequencies

full finite element

Rigid Body (6)

1st Bend

2nd Bend

3rd Bend

4th Bend

0. Hz

3.474 Hz

9.549 Hz

18.65 Hs

30.70 Hz

From component

Krylov modes,

A%

0.000 Hz 0.

3.474 Hs 0.

9.549 Hz 0.

18.69 Hz .21

33.15 Hz 8.0
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(a) Initial calculation.

(b) After normalization.

Figure 1.BRxed interface Krylov mode, block one, vector
orte.

(a) Initial calculation.

(b) After Gram-Schmldt orthogonalization.

Figure 2.--Rxed Interface Kwlov mode, block one, vector
two.

" 'i'

(a) IniUal calculation.

(b) After Gram-Schmidt orthogonalization.

Figure 3.BRxed Interface Krylov mode, block two, vector
one.

(a) Initial calculation.

(b) After Gram-Schmidt orthogonalization.

Figure 4.--Rxed interface Krylov mode, block one, vector
two.

14
E



Appendix - MSC/NASTRAN DMAP Listing of the Boundary

Flexibility Method of Block-Krylov Component Synthesis

$

$ BOUNDARY FLEXIBILITY METHOD DMAP IMPLEMENTATION

$

$ VERSION 1.0- KELLY CARNEY

$ IMPLEMENTED ABDALLAH'S WORK AS PUBLISHED

$

$ NOTES ON USAGE

S

$ - A DUMMY METHOD AND EIGR CARD MUST BE USED TO INITIATE RITZ

$ VECTOR CALCULATION.

$

$ - MODAL DEGREES OF FREEDOM MUST BE PROVIDED AND SPECIFIED

$ ON SE(_SET CARDS, AS WITH STANDARD NASTRAN SOLUTION
$

$ - MIXED BOUNDARY CONDITIONS (B AND C SET POINTS) ARE NOel _ YET

$ IMPLEMENTED. USE B OR C, NOT BOTH.
$

$ - NOT COMPATIBLE WITH DYNAMIC REDUCTION, IF REQUESTED IT WILL
$ NOT BE PERFORMED

$

$ - AUTO-OMIT FEATURE HAS BEEN DISABLED. IF AUTOSPC IS ON_

$ AUTO-OMIT IS NOT REQUIRED

$

$ PARAMETERS

$

$ PARAM,BPLEX,-I - A NEGATIVE VALUE ON THIS PARAMETER TURNS ON THE

$ BOUNDARY FLEXIBILITY METHOD.

$ IF MULTIPLE SUPERELEMENTS ARE BEING PROCESSED,

$ PLACE IN SUBCASE SECTION OF CASE CONTROL

$

$ PARAM,L,I - L IS THE NUMBER OF RITZ VECTOR DESIRED. IT IS
$ SET BY THE NUMERICAL VALUE OF I

$

$ PARAM,DIAG,I - A POSITIVE VALUE CAUSES A LARGE AMOUNT OF MOSTLY

$ INDESCIPBERABLE DATA TO BE PRINTED

$

$ MATRICES

$

$ INPUT o _KXX, CMMXX, GOATj USET

$

$ OUTPUTtFIXED INTERFACE- GOQ,

$ OUTPUTjPREE INTERFACE- GOQ, REVISED MAA AND GOAT

$

$

S SETUP BOUNDARY FLEXIBILITY PARAMETER AND DISABLE DYNAMIC

$ REDUCTION

S

ALTER Y2_ $

TYPE PARM.I,Y,(BFLEX=I) $

IF( BFLEX < 0 ) NODYNRED = -1 $

$

$ DISABLE AUTO-OMIT REDUCTION

$

ALTER 7SY $

IF(BFLEX < 0 ) NOARED =-I $

$

$ MOVE TO BOUNDARY FLEXIBILITY SEX_TION IF REQUESTED

$

ALTER Y7S $

COND BOUNFLX,BFLEX $ JUMP TO BOUNDRY FLEXIBILITY DMAP SECTION

$

ALTER Y83 $

JUMP ENDBF $

$

$ BEGIN BOUNDARY FLEXIBILITY METHOD SECTION

$

LABEL BOUNFLX$

$

$ CREATE AND SET INITAL PARAMETERS

$

TYPE PARM.I,N,(I=2) $ INCREMENT OF RITZ VECTORS

TYPE PARMj,I,N,(II=2) $ INC OF RITZ VEC IN FIRST SET

TYPE PARM.I,N,(J=2) $ INC OF RITZ VEC IN ITH SET

TYPE PARM.I_N,(IR=2) $ INC OF R-SET

TYPE PARM,,I,N,(JSET) $ SIZE OF RITZ VEC SET
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TYPE

TYPE

TYPE

FILE

FILE

PILE

FILE

FILE

FILE

FILE

_ARM,,RS,N,(MAXRAT) | MAXRAT FROM DECOMP OF CMKXX

PARM,,I,Y,(L----I) S TOTAL NUMBER OF RITZ VEC

PARM,,I,Y,(DIAG-----I) $ DIAGONOSTIC PRINTOUTS

QP=APPEND,OVRWRT $ ALLOW QP TO APPEND,OVERWRITE

QL----APPEND S ALLOW QL TO BE APPENDED TO

QNEW='-APPEND $ ALLOW QNEW TO BE APPENDED TO

PHrvz=ovRWRT $ ALLOW PBIVZ TO BE OVERWIIITTN

NPHIVR=AFPEND $ ALLOW NPHIVR TO APPEND

MAA=OVRWRT S ALLOW MAA TO BE OVERWRITTEN

KAA=OVRWRT S ALLOW KAA TO BE OVERWRITTEN

CHECK TO SEE IF BOTH B AND RC HAVE BEEN DEFINED

IF(NORC>0 AND NOBSET>0) MESSAGE /

/'FATAL ERROR - BOTH BSET AND CSET OR RSET DEGREES OF FREEDOM'/

'HAVE BEEN DEFINED, ONLY ONE TYPE IS CURRENTLY ALLOWED'/$

IF(NORC>0 AND NOBSET>0) JUMP RFERR $

$

$ PARTITION OUT SUPORT DEGREES OF FREEDOM, IF REQUESTED

$

VEC USET/VVRO/'V'/'R'/'COMP'/$ CREATE PARTN VECTOR R-SET

IF(NORSET >0) THEN $ EXECUTE ONLY IF R-SET

PARTN CMKXX,VYRO,/,,,KZZ/-I/////6 S PABTION STIFFNESS MATRIX

$

ELSE $ IF NO R-SET

EQUIV CMKXX,KZZ/ALWAYS $ RENAME CMKXX TO KZZ

ENDIF S

$

$ CALCULATE INITIAL RITZ VECTORS MATRIX

$

DECOMP KZZ/LZZ,/1/////S,N,SlNG/S,N,NBRCHG/

S,N ,MAXRAT/$ DECOMP STIFFN E_S MAT

IF (SlNG---I OR NBRCHG>0 OR MAXRAT>I.ES) MESSAGE/

/'FATAL ERROR-STIFFNESS SINGULAR.SUPPORT DOPS MAY BE REX_UIRED'/S

IF (SING=-I OR NBRCBG>0 OR MAXRAT>I.ES) JUMP RFERR $ SINGULAR MAT

DIAGONAL KZg-/IZZ/'SQUARE'/O. $ Z-SIZE IDENTITY MAT

FBS LZZ.IZZ/KIMV/$ CALCULATE K*'-I
$

$ FOR FIXED BC M_THOD

S

|F(NOBSET>0) THEN $

MPYAD KINV,C/vfMXX,/KINVM/$ CALCULATE Ke*-I'M

MPYAD KINV,MOA,/KINVMOA/$ CALCULATE K'e-I'MOA

MPYAD KINVM,GOAT,KINVMOA/QIS/$ CALCULATE INITIAL VEC

UPARTN USET,QIS/QISA,,,/'A'/'B'/'Q'/2 $ PARTN DOWN TO B-SIZE

ENDIF $

$

$ THIS SECTION IS EXECUTED FOR FREE INTERFACE METHOD

$

IF(NORC>0) THEN | IF EITHER R OR C SET

S

$ THIS SECTION IS _XECUTED FOR FREE INTERFACE METHOD,

$ WITH RIGID BODY MODES

$

IF(NORSET>0) THEN S ONLY IF R SET

$

$ CREATE AND ORTEO-NORMALIZE RIGID BODY TRANSFORMATION MATRIX

$

VECPLOT, ,BGPDTS_EQEXINS,CSTMS.USET/PHIGR/GRDPNT//6 $

UPARTN USET,PHIGR/PBIVR,,,/'G'/'V'/'S'/I $ RIGID BODY MAT
$

$ EXTRACT FIRST VECTOR FROM MATRIX AND NORMALIZE

$

MATMOD PHrvR,,,,,/PHIVRI,/1/I $ EXTRACT 1ST COLUMN

SMPYAD PHIVRI,CIv[MXX,PHIVRI,,,/NPHI/$////I////I$

DIAGONAL NPRI/NPHIS/'SQ_ARE'/-.6 $ SCALE FACTOR

MPYAD PHIVRI_NPHIS,/NPHIVR S NORMALIZE VECTOR
S

$ ORTHOGONALIZE REMAINING RIGID BODY VECTORS

$

DO WHILE (IR <= NORSET) $

$

MATMOD PHIVR,,,,,/PHIIR,/1/IR $ EXTRACT IRTH COLUMN
$

$ ORTHOGONALIZE IR VECTOR WITH PREVIOUS VECTORS

$

SMPYAD NPHIVR,CMMXX,PHIIR,,t/CIR/-_////I $ SCALEFACTOR

MPYAD NPBIVR,CIR,PHIIR/PHIIRS//-1 $ ORTHOGONALIZE

NORk{ALIZE ORTHOGONAL IR VECTOR
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SMPYAD PHIIRS,CMMXX,FNIIRS,,,/NPH|IR/3//I/1////I$

DIAGONAL NPmIRtNPHnRS/'SqUARE'/-.S S SCALE fACTOR
MPYAD PHI1RS,NPHIIRS,/PHIIRSS $ NORMALIZE VECTOR

APPEND PHIIRSS,/NPHIVR/2 $ ADD NEW VECTOR

IR ----IR -_ 1 $ INCREMENT

ENDDO $ END DO LOOP

FORM INERTIA RELIEF MATRIX, GE (E_NS 21,22,23 - ABDALLAH)

MERGE, ,,,KINV,VVRO,/GC/-I//6 $ EXPAND KINV TO X.SIZE

DIAGONAL GC/IXX/'SQUARE'/0. $ CREATE IDENTITY MAT
SMPYAD CMMXX,NPHIVR,NPHIVR,IXX,,IXX/AXX/4/.I/I////1/ $

SMPYAD AXX,GC,AXX,,,/GE/$////I////6 $ CALCULATE GE

THIS SECTION IS EXECUTED IF FREE INTERFACE WITHOUT RIGID-BODY

ELSE $

EQUIV

ENDIF $

KINV,GE/ALWAYS $ IF NO R-SET

FOR FREE INTERFACE, RIGID BODY OR NOT

VEC USET/VVCO/'V'/'C'/'COMP'/$ C-SET PARTN MATRIX

ADD VVRO,VVCO/VVRCO///I $ R AND C-SET PARTN MAT

PARTN GE,VVRCO,/GVRC.,/1/8 PARTITION OUT O OOLS

MPYAD GE,CMMXX,/KINVM/$ CALCULATE K*"-I"M

MPYAD KINVM,GVRC,/QISA/$ CALCULATE INITIAL VEC
ENDIF S

$

$ EXTRACT FIRST VECTOR FROM MATRIX AND NORMALIZE FOR FIXED OR FREE

$

MATMOD Q1SA,.,,/_IPS,/1/I $ EXTRACT IST COLUMN

SMPYAD qIPS,CM_/fXX,qIPS.,/NQX/3////X/I//I$

DIAGONAL NqIINQISI'SCIUARE'I-.S $ SCALE FACTOR

MPYAD Q1PS,NQIS,/qP $ NORMALIZE VECTOR

$
$

COND PRINT1,DIAG $

MATPRN KZZjCMMXX,GOATpPHIGR,PflIVR/$

MATPRN NPHIVR,GC,AXX,GE,KINVM/ $

MATPRN GVRO,QISA,QIPS,,/$

PRTPARM ///_NOBSET'/1 $

PRTPARM ///'NOTSET'/I $

PRTPARM ///'NORCJ/I S

PRTPARM ///'L'/I $

LABEL PRINT_ $
$

$ 0RTHOGONALIZE FIRST SET OF VECTORS

$

DO WHILE (I1 <= NOTSET) $

$

MATMOD QISA,,,,,/(_III,/I/II S EXTRACT IITH COLUMN

$

$ ORTflOGONALIZE I1 VECTOR WITH PREVIOUS VECTORS

$

SMPYAD QP,CMMXX,CIIII,,,/CII/3////I $ ORTHO SCALE FACTOR

MPYAD (_P,CI1,QII1/(_IIIS//-1 $ ORTHOGONALIZE

$

$ NORMALIZE ORTHOGONAL I1 VECTOR

$

SMPYAD _IIIS,CYkd[IvfXX,_II1S,./N(_III/S////1////I$

DIAGONAL NQIII/NQIIIS/'SQUARE'/-.S $ SCALE FACTOR

MPYAD (_III S,NQIIIS,/_IIISS $ NORMALIZE VECTOR

$

COND PRINT2,DIAG $

PRTPARM ///'II'/I$

MATPRN (_P,QII1,CI1,QIIIS,QIllSS/$
LABEL PRINT2 $

$

APPEND QIIISS,/QP/2 $ ADD NEW VECTOR
$ NOTE: IF NEW VECTOR IS NULL IT IS NOT APPENDED

$

II = II + I $ INCREMENT

ENDDO $ END DO LOOP

$

$ INITIALIZE (_L MATRIX

$

COPY QP/QL/ALWAYS/I $ QL - SUM OF VECTORS
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COND PRINT3,DIAG $

$MPYAD QL,CMMXX,QL.JOCHKI1/3////I $

MATPRN QL,OCBKll,,,/$

LABEL PRINTS $

$

$ BEGIN DO LOOP OF SOLVING FOR SUBSEQUENT VECTORS

$

DO WHILE (I <= L) $

$

$ CALCULATION OF NEW SET OF VECTORS

$

MPYAD KINVM,QP,/(_IS/$ (K".I)'RITZ PREVIOUS

PARAML QIS//'TRAILER'/1/S,N,NOJSET $ NO. COLUMS IN QIS

$

$ MAKE NEW SET OF VECTOR ORTHOGONAL TO PREVIOUS SETS

$

SMPVAD _L,CMMXX,qI$.,/CI/$////1 $ CALCULATE SCALE

MPYAD QL,CI,QIS/QISS//-I $ ORTHOGON ALIZE

$

$ EXTRACT FIRST VECTOR FROM NEW SET AND NORMALIZE

$

MATMOD QISS.,,,/QI31,/I/I $ EXTRACT IST COLUMN
SMPYAD QIJI,CMMXX,QIJI,,,/NQII/S////I////I$

DIAGONAL NQII/NQIIS/'SQUARE'/-.S $ SCALE FACTOR
MPYAD QI$1pN_IIS,/QNEW $ NORMALIZE VECTOR

$

COND PRINT4,DIAG 8

PRTPARM ///'P/1/ $

MATPRN QIS,CI,QISS,QIJ1,QNEW/ $
LABEL PRINT4 $

$

J = 2 S RESET LOOP COUNTER

$

$ ORTHOGONALIZE NEW SET OF VECTORS WITH EACH OTHER

$

DO WHILE (J <= NOJSET) $

$

MATMOD QISS,.,,/QIJ,/I/J $ EXTRACT _TH COLUMN

$

$ ORTHOGONALIZE JTH VECTOR WITH PREVIOUS VECTORS

|

SMPYAD _NEW,CMMXX+QIJ,./CJ/3////I $ ORTHO SCALING

MPYAD (_NEW,C$,QIJ/QI3S//-1 $ ORTHOGONALIZE

$

$ NORMALIZE ORTHOGONAL JTH VECTOR

8

SMPYAD (_IJS,CIVIMXX,QIJS,,,/NQIJ /S/ / //I// //IS

DIAGONAL NQIS/NQIJS/'SQUARE+/-.& I SCALE FACTOR

MPYAD Q1JS,NQISS,/_ISSS I NORMALIZE VECTOR

8
APPEND QIJSS,/QNEW/2 $ ADD NEW VECTOR

$

COND PRINT$,DIAG $

PRTPARM ///',I'/15
MATPRN C_I_,CJ,QIJS,QIJSS,QNEW/8

LABEL PRINTS $

$

,7 = $ + I $ INCREMENT
ENDDO $ END DO LOOP

$
$ APPEND NEW VECTOR TO VECTOR MATRIX AND COMPLETE LOOP

$

APPEND QNEW,/_L/2 $ APPEND NEW VECTOR TO PREVIOUS

COPY QNEW/(_P/ALWAYS/I $ RESET PREVIOUS VECTOR TO NEW

$

I = I + I $ INCREMENT
ENDDO $ END DO LOOP

$

$ FINISH PROCESSING MODE SHAPE MATRIX

$

IF (NORSET>0) THEN $ IF R-SET, APPEND

APPEND NPEIVR,QL/CMPHIXZ/I $ RIGID BODY MODES

ELSE $ IN NO R-SET, JUST

EQUIV QL,C_VIPEIXZ/ALWAY$ $ CONVERT TO NASTRAN NAME

ENDIF $

$

$ PERFORM MODE ORTHOGONALITY CHECK

S

SMPYAD CMPHIXZ,CMMXX,CMPHIXZ,,,/OCHKLL/3////1 $ PHI-T " M" PHI

SMPYAD CMPHIXZ,CMKXX,CMPHIXZ,,,/KBAR/3////1 $ PHI-T • K " PHI

$
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DIAGONAL OCHKLL/MI//-.5 S DIAGONAL TERM AND ROOT

DIAGONAL KBAR/KI//.5 $ DIAGONAL TERM AND ROOT

ADD MI,K1/Q/.1591SS//1 $ CALCULATE FREQUENCIES

MATPRN OCHKLL,KBAR,QL,Q,// $

$

PARAML CMPHIXZ/ffTRAILER'/1/S,N,NOZSET $ NUM RITZ =NUM EIGENVECTORS

$

LABEL ENDBF $

$

$ TRANSFORMATION MATRIX CREATION

$ * BASED ON RUBIN-MACNEAL FOR FREE MODES (DOESN'T USE ]NREL)

$

ALTER 807 $

COND TRANSF,BFLEX $ GO TO TRANSFORMATION DMAP

JUMP ETRANSF $ JUMP AROUND IF NOT REQ.

$

ALTER S0S $

LABEL TRANSF $ AVOID INREL MODULE

$

$ FREE BOUNDARY TRANSFORMATION

$

IF(NORC>0) THEN $ EXECUTE ONLY IF RC SET

$

$ CALCULATE SYSTEM FLEXIBILITY WHEN RITZ VECTOR HAVE BEEN

$ ORTHOGONALIZED WRT THE MASS MATRIX (EQN. (l&) ABDALLAB)

$

SMPYAD QL,CMKXX,QL.,/GKI/S////I////6 $ INTER CALC

SOLVE GKI,/GKIINV/3 $ INVERT INTER CALC

TRNSP QL/QLT $ TRANSPOSE QL

SMPYAD QL,GKUNV,QLT.,/GK/3////////6 $ CALC MODAL FLEX

$
$ CALCULATE RESIDUAL FLEXIBILITY MATRIX

$ NOTE: IF NO R-SET IS PRESENT THEN GE IS KINV

S

ADD GE,GK/GD//-1.0/0/$ GD = GE - GK

$

$ PARTITION DOWN SQUARE FLEXIBILITY MATRIX TO C OR BOUNDARY DOFS

$

PARTN GD,VVRCO,/GCRCD,GORCD./-I//6/$ GD = (GCRCD/GORCD)

$

$ FORM FREE "CONSTRAINT = MODE MATRIX, WHICH IS

$ THE LOWER LEFT PARTITION OF THE TRANSFORMATION MATRIX

$

SOLVE GCRCD,/GCCDINV/$ $ INVERT GCRCD

MPYAD GORCD,GCCDINV,/GOATFRS/$ GOAT = GOCD'GCCD*'-I

$

$ FORM FREE'MODAL" MATRIXj WHICH IS

$ THE LOWER RIGHT PARTITION OF THE TRANSFORMATION MATRIX

$

PARTN CMPBIXZ,,VVRCO/QRCL,QOL./1/$ CMPHIXZ = (QRCL/QOL)

MPYAD GOATFRS,QRCL,QOL/PHIVZ//- I/$ PHIVZ=QOL-GOAT*QRCL

$

$ PACK GOATFRS WITH ZEROS TO MAKE IT A-SIZE

$ THE LOWER LEFT PARTITION OF THE TRANSFORMATION MATRIX

$

VEC USET/VAQRCpA'/'(_'/'COMP'/ | FORM PART VECTOR

MERGE, ,,GOATFRS,,VAQRC,/GOATFREE/1/$ MAKE A-SIZE

$

$ FORM REPLACEMENT BOUNDARY MASS AND STIFFNESS MATRIX, THIS

$ TRANSFORMATION IS THE SIMILAR TO STANDARD CMS AND SOL QS,

$ EXCEPT FOR FREE, REVISED 'GOAT _MATRIXIS NOT EQUAL TO

$ CONSTRAINT MODES, SO STIFFNESS TRNASFORMATION IS SAME AS MASS

$

MPYAD MOO,GOATFREE,MOA/MOAIFR $ IDENTICAL TO $20

MPYAD MOA,GOATFREE,MAAI/MAA2FR/I $ INTERMEDIATE

MPYAD GOATFREE_OAIFR,MAA2FR/MAA/1////6 $ NEW MASS MATRIX

$

MPYAD KOOpGOATFREE,KOA/KOAIFR $ STIFFNESS SECTION

MPYAD KOA,GOATFREE,KAA1/KAA2FR/I $ INTERMEDIATE

MPYAD GOATFREE,KOAIFR,KAA2FR/KAA/1////6 $ NEW KAA MATRIX

$

$ REPLACE PREVIOUS GOAT WITH FREE ONE CALCULATED HERE

$

EQUIP" GOATFREE_GOAT/ALWAYS $

$

ENDIF $

$

$ MAKE PHIVZ Q-SIZE, THIS REPLACES INREL FOR FREE AND FIXED

$ BOUNDARY FLEXIBILITY METHODS

$

IF (NOZSET > NOQSET) MESSAGE /
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/'FATAL ERROR-NUMBER OF MODES EXCEEDS Q-SET DOF'/$

IF (NOZSET > NOQSET) JUMP RFERR $

$

MATGEN ,/ZQ/6/NOQSET/NOZSET/NOQSET $ CREATE PARTITIONING MATRIX

MERGE PHIVZ.,,ZQ,/GOQ/I $ TO MAKE PHIVZ (_-$1ZE (GOQ)

$

COND PRINT6,DIAG$

MATPRN CMPHIXZ_GKI,GKIINV_GK,GD//$

MATPRN GCRCD,GORCD,GCCDINV,GOATFRS,QRCL//$

MATPRN (_OL,PHIVZ,GOATFHEE,MAA,KAA//$

LABEL PRINT6 $

$

LABEL ETRANSF $

$

$ SETUP INTmRMEDIATE MODAL STIFFNESS MATRIX

$

ALTER 816,816 $

UMERGEI USET,KQQ.,/KLA A I/'A'/'Q'pT'/0 $

$

$ CREATE OFF-DIAGONAL MODAL STIFFNESS TERMS

$

ALTER 818 $

IF(NORC>0 AND BFLEX<0) THEN $

MPYAD KOO,GOAT_KOA/KOA1 $

MPYAD GOA(_,KOAI,/K_/I $

TRNSP KQT/KTQ $

ADD K(_rT,KTQ/KAA QT $

ADD KLAA1,KAAQT/KLAA $

ELSE $

EQUIV KLAAI,KLAA/ALWAYS $

ENDIF $

$

ALTER 859 $

COND PRINTT,DIAG |

MATPRN GO(_,KLAA,MLAA.// $

LABEL PRINT'+' $

$

ENDALTER $
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